68 research outputs found

    Prenatal diagnosis of trisomy 6q25.3-qter and monosomy 10q26.12-qter by array CGH in a fetus with an apparently normal karyotype.

    Get PDF
    We present the prenatal case of a 12.5-Mb duplication involving 6q25-qter and a 12.2-Mb deletion encompassing 10q26-qter diagnosed by aCGH, while conventional karyotype showed normal results. The genotype-phenotype correlation between individual microarray and clinical findings adds to the emerging atlas of chromosomal abnormalities associated with specific prenatal ultrasound abnormalities

    Maternal cell-free DNA-based screening for fetal microdeletion and the importance of careful diagnostic follow-up.

    Get PDF
    BackgroundNoninvasive prenatal screening (NIPS) by next-generation sequencing of cell-free DNA (cfDNA) in maternal plasma is used to screen for common aneuploidies such as trisomy 21 in high risk pregnancies. NIPS can identify fetal genomic microdeletions; however, sensitivity and specificity have not been systematically evaluated. Commercial companies have begun to offer expanded panels including screening for common microdeletion syndromes such as 22q11.2 deletion (DiGeorge syndrome) without reporting the genomic coordinates or whether the deletion is maternal or fetal. Here we describe a phenotypically normal mother and fetus who tested positive for atypical 22q deletion via maternal plasma cfDNA testing.MethodsWe performed cfDNA sequencing on saved maternal plasma obtained at 11 weeks of gestation from a phenotypically normal woman with a singleton pregnancy whose earlier screening at a commercial laboratory was reported to be positive for a 22q11.2 microdeletion. Fluorescence in situ hybridization and chromosomal microarray diagnostic genetic tests were done postnatally.ConclusionNIPS detected a 22q microdeletion that, upon diagnostic workup, did not include the DiGeorge critical region. Diagnostic prenatal or postnatal testing with chromosomal microarray and appropriate parental studies to determine precise genomic coordinates and inheritance should follow a positive microdeletion NIPS result

    Hydrothermal Resource-saving Processes in Complex Processing of Bauxite and Red Mud

    Get PDF
    The Bayer bauxite residue (red mud, RM) is environmentally hostile and hazardous to human health. Red mud can be viewed as an important and promising source of scandium, yttrium, zirconium and other elements rather than a solid waste. Due to a high content of iron in bauxites and especially in RM, the conversion of hematite into magnetite in Bayer liquor plays a key role in the exploration of a cleaner technology of alumina production. Thus, RM and raw bauxite were used for hydrothermal digestion in an original one-stage method of magnetite production during co-recovery of alumina. The yield of alumina reaches 80% from RM and more from bauxites during digestion with addition of lime and Fe(II) or Fe . The saturation magnetization of a bulk sample of magnetized bauxite is 40.5 emu/g, two orders of magnitude higher than that of a raw red mud sample. Moreover, magnetite containing a residue has a high crystallinity, which contributes to better deposition and magnetic separation in the development of an overall flowsheet for RM utilization. Keywords: Red mud, bauxite, hydrothermal treatment; enrichment, extraction, magnetization, hematite, magnetite, rare element

    Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?

    Get PDF
    PurposeTo evaluate the clinical utility, diagnostic yield and rationale of integrating microarray analysis in the clinical diagnosis of hematological malignancies in comparison with classical chromosome karyotyping/fluorescence in situ hybridization (FISH).MethodsG-banded chromosome analysis, FISH and microarray studies using customized CGH and CGH+SNP designs were performed on 27 samples from patients with hematological malignancies. A comprehensive comparison of the results obtained by three methods was conducted to evaluate benefits and limitations of these techniques for clinical diagnosis.ResultsOverall, 89.7% of chromosomal abnormalities identified by karyotyping/FISH studies were also detectable by microarray. Among 183 acquired copy number alterations (CNAs) identified by microarray, 94 were additional findings revealed in 14 cases (52%), and at least 30% of CNAs were in genomic regions of diagnostic/prognostic significance. Approximately 30% of novel alterations detected by microarray were >20 Mb in size. Balanced abnormalities were not detected by microarray; however, of the 19 apparently "balanced" rearrangements, 55% (6/11) of recurrent and 13% (1/8) of non-recurrent translocations had alterations at the breakpoints discovered by microarray.ConclusionMicroarray technology enables accurate, cost-effective and time-efficient whole-genome analysis at a resolution significantly higher than that of conventional karyotyping and FISH. Array-CGH showed advantage in identification of cryptic imbalances and detection of clonal aberrations in population of non-dividing cancer cells and samples with poor chromosome morphology. The integration of microarray analysis into the cytogenetic diagnosis of hematologic malignancies has the potential to improve patient management by providing clinicians with additional disease specific and potentially clinically actionable genomic alterations

    Cytogenetic and molecular analyses of de novo translocation dic(9;13)(p11.2;p12) in an infertile male

    Get PDF
    BACKGROUND: Whole arm t(9;13)(p11;p12) translocations are rare and have been described only a few times; all of the previously reported cases were familial. RESULTS: We present here an infertile male carrier with a whole-arm reciprocal translocation dic(9;13)(p11.2;p12) revealed by GTG-, C-, and NOR-banding karyotypes with no mature sperm cells in his ejaculate. FISH and genome-wide 400Β K CGH microarray (Agilent) analyses demonstrated a balanced chromosome complement and further characterised the abnormality as a dicentric chromosome (9;13): dic(9;13)(pterβ†’p11.2::p12β†’qter),neo(9)(pterβ†’p12β†’neoβ†’p11.2). An analysis of the patient’s ejaculated cells identified immature germ cells at different phases of spermatogenesis but no mature spermatozoa. Most (82.5%) of the germ cells were recognised as spermatocytes at stage I, and the cell nuclei were most frequently found in pachytene I (41.8%). We have also undertaken FISH analysis and documented an increased rate of aneuploidy of chromosomes 15, 18, X and Y in the peripheral blood leukocytes of our patient. To study the aneuploidy risk in leukocytes, we have additionally included 9 patients with non-obstructive azoospermia with normal karyotypes. CONCLUSIONS: We propose that the azoospermia observed in the patient with the dic(9;13)(p11.2;p12) translocation was most likely a consequence of a very high proportion (90%) of association between XY bivalents and quadrivalent formations in prophase I

    Mosaicism for r(X) and der(X)del(X)(p11.23)dup(X)(p11.21p11.22) provides insight into the possible mechanism of rearrangement

    Get PDF
    We report a patient with a unique and complex cytogenetic abnormality involving mosaicism for a small ring X and deleted Xp derivative chromosome with tandem duplication at the break point. The patient presented with failure to thrive, muscular hypotonia, and minor facial anatomic anomalies, all concerning for Turner syndrome. Brain MRI revealed mild thinning of the corpus callosum, an apparent decrease in ventricular white matter volume, and an asymmetric myelination pattern. Array comparative genome hybridization analysis revealed mosaicism for the X chromosome, deletion of the short arm of an X chromosome, and a duplication of chromosome region Xp11.21-p11.22. G-banded chromosome and FISH analyses revealed three abnormal cell lines: 46,X,der(X)del(X)(p11.23)dup(X)(p11.21p11.22)/46,X,r(X)(q11.1q13.1)/45,X. The small ring X chromosome was estimated to be 5.2 Mb in size and encompassed the centromere and Xq pericentromeric region. X chromosome inactivation (XCI) studies demonstrated a skewed pattern suggesting that the ring X remained active, likely contributing to the observed clinical features of brain dysmyelination. We hypothesize that a prezygotic asymmetric crossing over within a loop formed during meiosis in an X chromosome with a paracentric inversion resulted in an intermediate dicentric chromosome. An uneven breakage of the dicentric chromosome in the early postzygotic period might have resulted in the formation of one cell line with the X chromosome carrying a terminal deletion and pericentromeric duplication of the short arm and the second cell line with the X chromosome carrying a complete deletion of Xp. The cell line carrying the deletion of Xp could have then stabilized through self-circularization and formation of the ring X chromosome

    Clinical Implementation of Chromosomal Microarray Analysis: Summary of 2513 Postnatal Cases

    Get PDF
    BACKGROUND: Array Comparative Genomic Hybridization (a-CGH) is a powerful molecular cytogenetic tool to detect genomic imbalances and study disease mechanism and pathogenesis. We report our experience with the clinical implementation of this high resolution human genome analysis, referred to as Chromosomal Microarray Analysis (CMA). METHODS AND FINDINGS: CMA was performed clinically on 2513 postnatal samples from patients referred with a variety of clinical phenotypes. The initial 775 samples were studied using CMA array version 4 and the remaining 1738 samples were analyzed with CMA version 5 containing expanded genomic coverage. Overall, CMA identified clinically relevant genomic imbalances in 8.5% of patients: 7.6% using V4 and 8.9% using V5. Among 117 cases referred for additional investigation of a known cytogenetically detectable rearrangement, CMA identified the majority (92.5%) of the genomic imbalances. Importantly, abnormal CMA findings were observed in 5.2% of patients (98/1872) with normal karyotypes/FISH results, and V5, with expanded genomic coverage, enabled a higher detection rate in this category than V4. For cases without cytogenetic results available, 8.0% (42/524) abnormal CMA results were detected; again, V5 demonstrated an increased ability to detect abnormality. Improved diagnostic potential of CMA is illustrated by 90 cases identified with 51 cryptic microdeletions and 39 predicted apparent reciprocal microduplications in 13 specific chromosomal regions associated with 11 known genomic disorders. In addition, CMA identified copy number variations (CNVs) of uncertain significance in 262 probands; however, parental studies usually facilitated clinical interpretation. Of these, 217 were interpreted as familial variants and 11 were determined to be de novo; the remaining 34 await parental studies to resolve the clinical significance. CONCLUSIONS: This large set of clinical results demonstrates the significantly improved sensitivity of CMA for the detection of clinically relevant genomic imbalances and highlights the need for comprehensive genetic counseling to facilitate accurate clinical correlation and interpretation

    Identification of De Novo Copy Number Variants Associated with Human Disorders of Sexual Development

    Get PDF
    Disorders of sexual development (DSD), ranging in severity from genital abnormalities to complete sex reversal, are among the most common human birth defects with incidence rates reaching almost 3%. Although causative alterations in key genes controlling gonad development have been identified, the majority of DSD cases remain unexplained. To improve the diagnosis, we screened 116 children born with idiopathic DSD using a clinically validated array-based comparative genomic hybridization platform. 8951 controls without urogenital defects were used to compare with our cohort of affected patients. Clinically relevant imbalances were found in 21.5% of the analyzed patients. Most anomalies (74.2%) evaded detection by the routinely ordered karyotype and were scattered across the genome in gene-enriched subtelomeric loci. Among these defects, confirmed de novo duplication and deletion events were noted on 1p36.33, 9p24.3 and 19q12-q13.11 for ambiguous genitalia, 10p14 and Xq28 for cryptorchidism and 12p13 and 16p11.2 for hypospadias. These variants were significantly associated with genitourinary defects (Pβ€Š=β€Š6.08Γ—10βˆ’12). The causality of defects observed in 5p15.3, 9p24.3, 22q12.1 and Xq28 was supported by the presence of overlapping chromosomal rearrangements in several unrelated patients. In addition to known gonad determining genes including SRY and DMRT1, novel candidate genes such as FGFR2, KANK1, ADCY2 and ZEB2 were encompassed. The identification of risk germline rearrangements for urogenital birth defects may impact diagnosis and genetic counseling and contribute to the elucidation of the molecular mechanisms underlying the pathogenesis of human sexual development
    • …
    corecore